A. Sydow (Ed.): 15® IMACS World Congress on Scientific
Computation, Modelling and Applied Mathematics. Volume
2, Numerical Mathematics, W&T Verlag, Berlin, 1997.

Tawards Credible Implementation of Inner Interval Operations

Evgenija D. Popova & Svetoslav. M. Markov
Institute of Mathematics and Computer Science
Bulgarian Academy of Sciences

“Acad. G. Bonchev” str., block 8, BG-1113 Sofia, Bulgaria
e-mails: epopova@bio.bas.bg; smarkov@bio.bas.bg

Keywords: Interval Arithmetic, Implementation, Reliability

INTRODUCTION

Interval arithmetic is a widely used technique providing validated numerical results. have
been proposed aiming at improving its properties and finding tight bounds to solutions of
some problems in an effective way. We consider conventional interval arithmetic [1], extended
by four inner interval operations [7]. The obtained extended interval arithmetic structure is
suitable for the effective computation of functional ranges reducing their overestimation with
ordinary interval arithmetic [2], [4].

Additionally, interval arithmetic, with directed roundings [6], can provide mathematically
rigorous results from floating-point operations on computers. Although the arithmetic oper-
ations with directed roundings, specified by IEEE floating-point standards [3], are sufficient
for the implementation of conventional interval operations with 1 ulp (unit in the last place)
accuracy of the interval end-points, some reliability problems may occur implementing supple-
mentary interval operations. This paper briefly outlines interval arithmetic, extended by four
supplementary interval operations, discuss a source of numerical errors at the implementation
of floating-point inner interval operations and shows different ways for their suppression. The
goal is to make computations involving these operations more accurate and credible.

INTERVAL SPACE (IR, +,+~, %, x~,C)

Consider the set of intervals TR = {[a™,a*] | a= < at; a7,a™ € R}. Denote by Z =
0U{[a",a™]|a” <0 < at; a”,at € R} the set of all intervals involving zero in their interior.
We utilize functional “+” notations a* for the interval end-points, where A € A = {+, —},
so that interval formulas can be written in a more closed form. The binary variable A can
be expressed as a “product” of two or more binary variables, A = pv, p,v € A, defined by
++ = —— =+, and +— = —+ = —. Several functionals, defined to characterize intervals,
are widely used in interval analysis. For an interval A € TR\ Z “sign” o : IR\ Z — A
is defined by o(A) = {+, ifa™ > 0; —, if a* < 0}. For every interval A € IR “width”
w: IR — R is defined by w = a™ —a~. Functional y : TR — [—1, 1] is defined to characterize
a symmetry behaviour of intervals by y(A) = —1 for A =[0,0] and x(A) = {a" Jat if |[a~| <
lat|; at/a~, otherwise.}. Therefore functional y admits the geometric interpretation that A
is more symmetric than B iff y(A) < x(B).

371



The set I R together with the ordinary relation for inclusion C and the basic interval arithmetic
operations form the well-known interval arithmetic space (IR, +, —, x, /,<) [1]. Addition and
multiplication operations from this space can be expressed by

A+ B = [‘—|—b‘7 at + "], for A, B € IR;
[a=7B)p=o(d) - qo(B)pr(A)], for A,Be IR\ Z,
A B - [ag —a A)7 aU(A)bU(A)], for Ae IR\ Z, B € Z,
- [a= By (B) o (B)po(B)], for Ac Z, Be IR\ Z,
[

mm{a bt atb}, max{a=b",atbt}], for A, B € Z.

In [7] the set of conventional interval arithmetic operations was extended by two supplemen-
tary operations +7, X

A+ B = [a —a+ba aa+b—a], for A, B € IR, (1)
[a” Je a0 (Bepr(A)e], for A,B€ IR\ Z,
_ _ [a=7 () gD pr(A)]] for Ac IR\ Z, B € Z,
AXxTB = 4 [, >, o B)y-o(B)] for Acz Belr\z
[

ma X{a bt,atb}, min{a~b",atbt}], for A,B € Z,

where o = {+, if w(A) > w(B); —, fw(A) < w(B)} and ¢ = {+, if x(A) > x(B);
The elements —A = [—at,—a”] and 1/A = [1/at,1/a"] are inverse with respect to the
operations +~ and x 7, resp. Thus the following operations can be obtained as composite:

A—B = A+(=B)=la" —b", a" —b7], for A,B € IR,
A—"B = A4+ (=B)=[a"*=b"", a® =0b"], for A,B € IR, (3)
a=B) [pr (D) qoB) [p=o(D] - for A, B € IR\ Z,
a=o(B) =18, U(B)/b—U(B)], for A7 BelR\Z

s _ B [ac’()/bU( : /b (A=) for A,BE IR\ Z,
Al"B = Ax (1/B)_{[a B) [ (B), /b” N forAeZ BelR\z Y

AJB = Ax(1/B):H

o« and € are defined as above.

Every operation o € {4+, —, x, /} satisfies the relation:
AoB={aob|lac Abe B}, AABeIR(BeIR\Z ifo=])

and the corresponding supplementary operation satisfies the relation Ao~ B C Ao B, due to
which o~ operations are called inner interval operations and the conventional ones — outer
interval operations.

The extended interval arithmetic structure (IR, +,4+~, x, X, C) posesses better algebraic
properties than the conventional one:

o for A/ BE€ IR and o€ {+,4+7,x,x"}, AoB=BoA.

e The outer + and x operations are associative, while +~ and x~ are conditionally associative
depending on the value of «, resp. e.

e X =1[0,0] =0and Y =[1,1] =1 are the unique neutral elements with respect to all (inner
and outer) addition and multiplication operations.

372



e The elements —A and 1/A satisfy 0 C A+ (—A)=A—A, resp. 1 C Ax(1/A)= A/A and
they are the unique inverse elements with respect to +~, x~ so that A4+~ (—A) = A——A =0,
resp. Ax (1/A)=A/"A=1.

o There exist conditionally distributive relations connecting +, 47, X and x~.

A number of numerical algorithms with result verification have been developed showing the
advantages of inner interval operations (see e. g. [2], [4]). Some properties of the extended
interval arithmetic structure (IR, +,47, x, x~, C), its relations to other interval arithmetic
extensions and a large list of references can be found in [8].

WIDTH AND SYMMETRY BASED IMPLEMENTATION

The theory of computer arithmetic defines computer interval arithmetic by semimorphism [6].
Let F' be a floating-point symmetric screen over R and F = F/(b, p,emin, emax) is defined by
its base b, its precision p, and its minimal and maximal exponent, emin and emax. If denote by
IF={[a",at] € IR | a™,a™ € I'} the set of computer representable intervals, then {IF,C}
is a screen of {IR,C}. Rounding O : IR — [F is defined as a monotonic function with
the properties projection and monotonicity. A third property (inclusion) specifies directed
roundings for intervals A € I R:

outward rounding : CA = [Va~, Aat] D A; inward rounding : QA = [Aa™,va™] C A,

where 7, A : R — F' are corresponding floating-point directed roundings toward —oo (/)
and toward +oo (A) [3], [6]. If o € {+,4+7,—,—", %, x7,/,/7} is an arithmetic operation
in I R, the corresponding computer operation @ in [F'is defined by

AR B = 0O(AoB), for A, BellF, Oe{C 0O}
The explicit formulae for computation of the corresponding result are summarized as follows:

OC(AoB)=[v (Ao B)", A(AoB)"]; O(AoB)=[A(AoB)", v (AoB)T].

In TEEE floating-point environment, outer interval operations can be realized easily with 1
ulp accuracy by floating-point operations with directed rounding. End-points of the resulting
intervals of outer + and — operations are specified explicitly by floating-point expressions.
End-points of the resulting intervals of outer x and / operations are determined by the
algebraic signs of the end-points of interval arguments. The algebraic sign of a rounded
floating-point number is determined exactly by the IEEE systems.

The implementation of inner interval operations, however, is more difficult. The defining
formulae of inner addition and subtraction operations (1), (2) involve comparison of the
width of the arguments, and the defining formulae of multiplication and division operations
(3), (4) involve comparison of the symmetry functional for the arguments. Computation of
each of these functionals require a floating-point operation involving round-off error. Even
with +7 and —~ operations, which seem so simple, the round-off error at the computation of
w for each of the interval arguments may lead to a incorrect comparison and as a consequence,
to a wrong interval result for certain values of the arguments. Next examples illustrate this
effect.

373



Example 1. Compute O(A 4+~ B) for A = [0.465 % 10%,0.746 * 10°] and B = [—0.85 *
10%,0.692 % 10%] in decimal floating-point system F = F(10,3,—6,6). The exact width values
w(A) = 699.5 < w(B) = 700.5 are not elements of F', and Ow(A) = Ow(B) = 0.7 * 10?,
where O denotes round-to-nearest. An implementation, based on the defining formula (1)
with a = 4, will produce a wrong result [\/(a™ +b%), A(a™ 4+ b7)] = [0.738 x 10°,0.738 % 10°],
for which A+~ B € O(A +~ B), while the correct result is [0.737 % 10%,0.739 * 10?].

Using one of the directed roundings O € {57, A} for the computation of Ow(A) and Ow(B)
will help to perform a correct comparison of latter and thus to obtain a correct result of
O(A 47 B) when A and B are those of Example 1 but a wrong result may be delivered for
other values of A and B.

Example 2. Compute O(A +~ B) for A = [—0.5 % 10%,0.999 * 10°] and B = [—0.85 *
10%,0.999 x 10°] in decimal floating-point system F = F(10,3,—6,6), comparing Aw(A) and
Aw(B). The exact width values w(A) = 999.5 % 10°> < w(B) = 1000.5 * 10> are not elements
of F, and Aw(A) = Aw(B) = co. An implementation, based on the defining formula (1)
with a = 4, will produce a wrong result [\/(a™ + %), A(a™ 4+ b7)] = [0.998 x 10°,0.998 * 10°],
for which A+~ B € O(A +~ B), while the correct result is [0.997 % 10°,0.999 * 10°].

A comparison operation between y(A) and x(B), for the computation of O(A o~ B) where
0 e {O,¢} and o € {x,/}, may be influenced by even more round-of errors. The above
examples show that an implementation of inner interval operations, based on comparison
between rounded values of w, resp. y functionals, cannot produce credible results. For a
program to be credible, the results it produces must never be misleading.

CREDIBLE IMPLEMENTATION ALGORITHMS

There exist two alternatives for implementation of outer interval multiplication operation.
First alternative involves nine cases determined by the algebraic signs of the end-points of the
operands. Second alternative involves computation of minimum and maximum of the four
possible products of the operands end-points according to the following formula

(A x B) = [min{y(a77), 7 (a™b"), (a*b7), 7 (aTb7)},
max{A(a”b7), Ala”b%), A(atd™), Al(aTbT)}].

The average number of multiplications required for the first alternative is less than that
required by the second one. Implemented in software, the relative efficiencies of both alterna-
tives are architecture dependent, although the first alternative is often preferred in low-level
implementations designed for efficiency. Considerations in the previous section showed that
for inner interval operations we have to seek implementation algorithms based on rounded ex-
pressions only for the result end-points, rather than using a priori floating-point computations
of wor y.

A careful analysis of formulae (1)—(4) and some investigations (see e. g. [8],[9]) of the rela-
tions between extended interval arithmetic structure (IR, +,+7, x, x~,C) and other alge-
braic extensions [5] of conventional interval arithmetic, led to a second alternative for the
implementation of inner interval operations, based on the following formulae:

C(A+™ B) = [min{vy(e” + b"’), V(a"’ +67)}, max{A(a” + b+), A(a"’ +b67)}; (5)

374



HA="B) = [min{vy(a™ —b7),v(a" = ")}, max{A(a” —b7), A(a+ -} (6)
[min{7(a”6%), 7(a™b7)}, max{A(a™b"), A(aTb7)}],
if o(A)=0(B),A,B€ IR\ Z;
[min{(a™67), v (a™6F)}, max{A(a™b7), AlaTT)}],
if o(A)# o(B),A,B€ IR\ Z;
O(AXx™ B) = [min{y(a=7Mb=o) 7 (a= (A))} (7)
max{A(a=Wp~ U(A)),A(a Y], ifA€ IR\ Z,B¢€ Z;
[min{v7 (a7 (2), G (a”P)b=0(F))},
max{A(a=7B)p= U(B)),A(ag b U(B))}], itAeZ,BelR\ Z;
[max{/(a"0"), 7(atd)}, min{A(a"b7), Aatbt)}], if A,B € Z;
[min{7(a”/67), 7 (a™/67)}, max{A(a”[b7), A(a™/bT)}],
if o(A)=0(B),A,B€ IR\ Z;
- [min{7(a™/6%), 7(a¥/b7)}, max{A(a™/bT), A(a™/67)}],
OAlTB) = it o(A) £ o(B), A, Be IR\ 7z; O
[min{7(a=7t®)/b"3)), 7 (a?(P)/b7(5)) },
max{A(a"7B) /b7 BN A(a”B) i BN}, if A€ Z,Be IR\ Z.

The implementations, based on formulae (5)—(8), provide credible results for inner interval
operations. Inner multiplication operation involves seven cases, determined by the algebraic
signs of the end-points of the operands. For inner addition and subtraction operations and
each sign-dependent case of inner multiplication and division operations, these algorithms
involve four arithmetic operations and two comparison operations. Note, however, that in all
cases these algorithms compute only two floating-point expressions using directed rounding,
rather than four expressions by the corresponding algorithm for outer interval operations. This
observation allows us to formulate more simple algorithms for the implementation of inner
addition and subtraction operations and each sign-dependent case of inner multiplication
and division operations. Denote by expr; one of the two floating-point expressions, for the
corresponding case, defined by formulae (5)—(8), and by expr; the other one.

Algorithm 1. Outwardly rounded inner interval operations.

Compute r~ = v/(expr, ); rt = /(expr,);
If = <r* then res=[r", A(expr,)]

else res = [r*, A(expr,)].

This algorithm involves three arithmetic and one comparison operations. Inwardly rounded
inner interval operations play important role for computation of functional ranges so that
their implementation is also of interest. When both exact end-point values for the result of
an inner interval operation fall between two successive machine numbers, no element of I F
can represent the inwardly rounded result of the corresponding inner interval operation. That
is why a more complicated algorithm should be implemented to provide credible results from
inwardly rounded inner interval operations. Algorithm 2 requires three arithmetic and two
comparison operations in the worst case.

375



Algorithm 2. Inwardly rounded inner interval operations.

Compute r~ = v/(expr,); rt = V(expr,);
If r~ <rt then res = [A(expr,), rt]
elself = >rt then res = [A(expr,), r7]

else Signal INVALID OPERATION
deliver [qNaN, gNaN].

CONCLUSION

We explored the sources of numerical errors in the implementation of floating-point inner

interval operations and showed different ways for their suppression. The proposed implemen-
tation algorithms are efficient and can be used for developing credible and accurate programs.
We believe that present investigations will help the optimized implementation of interval
arithmetic by language compilers and in hardware so that it may be fast and efficient.

Acknowledgements. This work was partially supported by the Bulgarian National Science
Fund under grand No. I-507/95.

REFERENCES

Alefeld, G.; Herzberger, J.: Introduction to Interval Computations. Academic Press
(1983).

Alt, R.; Lamotte, J.-L.: On the Evaluation of Functional Ranges Using a Random Inter-
val Arithmetic. Extended Abstracts INTERVAL’96, Int. Conf. on Interval Methods and
Computer Aided Proofs in Science and Engineering, Wiirzburg, pp. 11-12 (1996).

ANSI/IEEE: IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEFE Std 754-
1985, New York (1985).

Bartholomew-Biggs, M. C.; Zakovic, 5.: Using Markov’s Interval Arithmetic to Fvaluate
Bessel-Ricatti Functions. Numerical Algorithms, 10, pp. 261-287 (1995).

Kaucher, E.: Interval Analysis in the Extended Interval Space I R. Computing Suppl. 2,
pp. 33-49 (1980).

Kulisch, U., Miranker, W. L.: Computer Arithmetic in Theory and Practice. Academic
Press, New York (1981).

Markov, S. M.: Frtended Interval Arithmetic. Compt. Rend. Acad. Bulg. Sci., 30, 9,
pp. 1239-1242 (1977).

Markov, S. M: On Directed Interval Arithmetic and its Applications. Journal of Universal
Computer Science, 1, 7, pp. 510-521 (1995).

Popova, E. D.: Transition Formulae Between Some Interval Arithmetic Structures.
Manuscript, Inst. of Mathematics & Informatics, BAS, Sofia (1996).

376



